Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling.
نویسندگان
چکیده
Platinum-based chemotherapy is the first-line treatment for non-small cell lung cancer, but recurrence occurs in most patients. Recent evidence suggests that CD133(+) cells are the cause of drug resistance and tumor recurrence. However, the correlation between chemotherapy and regulation of CD133(+) cells has not been investigated methodically. In this study, we revealed that CD133(+) lung cancer cells labeled by a human CD133 promoter-driven GFP reporter exhibited drug resistance and stem cell characteristics. Treatment of H460 and H661 cell lines with low-dose cisplatin (IC(20)) was sufficient to enrich CD133(+) cells, to induce DNA damage responses, and to upregulate ABCG2 and ABCB1 expression, which therefore increased the cross-resistance to doxorubicin and paclitaxel. This cisplatin-induced enrichment of CD133(+) cells was mediated through Notch signaling as judged by increased levels of cleaved Notch1 (NICD1). Pretreatment with the γ-secretase inhibitor, N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester (DAPT), or Notch1 short hairpin RNAs (shRNA) remarkably reduced the cisplatin-induced enrichment of CD133(+) cells and increased the sensitivity to doxorubicin and paclitaxel. Ectopic expression of NICD1 reversed the action of DAPT on drug sensitivity. Immunohistochemistry showed that CD133(+) cells were significantly increased in the relapsed tumors in three of six patients with lung cancer who have received cisplatin treatment. A similar effect was observed in animal experiments as cisplatin treatment increased Notch1 cleavage and the ratio of CD133(+) cells in engrafted tumors. Intratumoral injection of DAPT with cisplatin treatment significantly reduced CD133(+) cell number. Together, our results showed that cisplatin induces the enrichment of CD133(+) cells, leading to multidrug resistance by the activation of Notch signaling.
منابع مشابه
Tumor and Stem Cell Biology Cisplatin Selects for Multidrug-Resistant CD133þ Cells in Lung Adenocarcinoma by Activating Notch Signaling
Platinum-based chemotherapy is the first-line treatment for non–small cell lung cancer, but recurrence occurs in most patients. Recent evidence suggests that CD133þ cells are the cause of drug resistance and tumor recurrence. However, the correlation between chemotherapy and regulation of CD133þ cells has not been investigated methodically. In this study, we revealed that CD133þ lung cancer cel...
متن کاملCisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling
Notch signaling regulates normal stem cells and is also thought to regulate cancer stem cells (CSCs). Recent data indicate that Notch signaling plays a role in the development and progression of osteosarcoma, however the regulation of Notch in chemo-resistant stem-like cells has not yet been fully elucidated. In this study we generated cisplatin-resistant osteosarcoma cells by treating them wit...
متن کاملTumor and Stem Cell Biology Aldehyde Dehydrogenase Activity Selects for Lung Adenocarcinoma Stem Cells Dependent on Notch Signaling
Aldehyde dehydrogenase (ALDH) is a candidate marker for lung cancer cells with stem cell-like properties. Immunohistochemical staining of a large panel of primary non–small cell lung cancer (NSCLC) samples for ALDH1A1, ALDH3A1, and CD133 revealed a significant correlation between ALDH1A1 (but not ALDH3A1 or CD133) expression and poor prognosis in patients including those with stage I and N0 dis...
متن کاملAldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling.
Aldehyde dehydrogenase (ALDH) is a candidate marker for lung cancer cells with stem cell-like properties. Immunohistochemical staining of a large panel of primary non-small cell lung cancer (NSCLC) samples for ALDH1A1, ALDH3A1, and CD133 revealed a significant correlation between ALDH1A1 (but not ALDH3A1 or CD133) expression and poor prognosis in patients including those with stage I and N0 dis...
متن کاملIsolation and characterization of proliferative, migratory and multidrug-resistant endometrial carcinoma-initiating cells from human type II endometrial carcinoma cell lines.
Although the highly proliferative, migratory and multidrug resistant phenotype of human type II endometrial carcinoma (EC) is well characterized, improved clinical treatments have not yet been developed. In this study, CD44 and CD133 were used as markers to screen, isolate and enrich carcinoma-initiating cells (CICs) from the human type II EC cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 73 1 شماره
صفحات -
تاریخ انتشار 2013